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Phase Determination from New Joint Probability Distributions: Space Group P1 
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(Received 4 September 1957) 

A procedure for calculating phases in space group P1 is described. The new formulas constitute an 
improvement over earlier ones in that  they make more effective use of the available data. In addi- 
tion, two fundamental  identities are presented which play an important role in the procedure. 

The derivation of the new formulas is based on the joint probability distributions of several 
normalized structure factors, obtained by fixing the crystal structure and allowing the indices to 
range uniformly but not independently over the vectors in reciprocal space. From these, the ex- 
pected values of the products of powers of several structure factors are found. The expected values, 
together with a subsequent integrating process, lead to explicit formulas for the magnitudes of 
certain structure invariants in terms of the observed intensities alone. By means of the first funda- 
mental identity, the initial values for the magnitudes of the structure invariants are improved, 
thus facilitating the problem of selecting one of the two enantiomorphous structures permitted by 
the given set of observed intensities. Once an enantiomorph has been chosen the second identity 
leads to refined values (both signs and magnitudes) of the invariants. Initial values of the individual 
phases are then readily obtainable, and a final least-squares adjustment procedure yields improved 
values for the phases. 

1. I n t r o d u c t i o n  

In  this paper  formulas are derived which yield the 
phases of the structure factors explicit ly in terms of 
the measured exper imental  intensities. The method of 
derivation is the same as tha t  described in a previous 
paper  devoted to space group P 1  (Haup tman  & Karle,  
1958). The joint  probabi l i ty  distr ibutions of several 
s tructure factors, which are employed, are obtained 
on the basis that the crystal structure is fixed and that 
the indices range uni formly  but  not independent ly  
over the vectors in reciprocal space. These distribu- 
tions are used to answer the question: 'Wha t  is the 
expected value or average over indices of specific 
combinat ions of the structure factors or their  magni- 
tudes? ' .  I t  is the answer to this question which 
constitutes the phase-determining formulas. 

By  contrast,  the joint  probabi l i ty  distr ibutions of 
several s tructure factors obtained in Monograph I 
(Haup tman  & Karle,  1953a) were derived on the basis 
tha t  the indices were fixed and the atomic coordinates 
ranged uniformly and independent ly  through all pos- 
sible values. These distr ibutions afforded an answer 
to the question: 'What is the probability that the sign 
of a structure factor be plus? ' .  From the probabi l i ty  
distr ibutions so obtained, a procedure for phase deter- 
minat ion  was inferred. The distr ibutions derived in 
this  paper  constitute another  application of the 
methods introduced in Monograph I, yielding, how- 
ever, formulas which have exact ra ther  t han  probable 
validity.  

Formulas  for phase de terminat ion  have already been 
given for space group P1 by  Vaughan (1956, 1958) and 
by  Karle  & H a u p t m a n  (1957). Vaughan obtained an 
approximate  formula for computing the magni tudes  

of invar iants  by  means  of the Pat terson superposition 
method.  His formula for large N asymptot ica l ly  ap- 
proaches our algebraicly exact  one (1957, eq. (2-2)), 
corresponding to (2.1.3) of this  paper  when p=ff=r=2. 
The new formulas presented here constitute a genera- 
l ization of those obtained for space group P1 by  means  
of the  unified algebraic approach (Karle & Haup tman ,  
1957). The new basic formulas will be seen to reduce to 
the older algebraic ones for specific values of the 
parameters,  i.e. p = q = r = 0 or 2. In  addition, the  
integrat ion over non-negative values of p, q and r 
gives rise to formulas having impor tan t  pract ical  
significance. I t  is expected tha t  the integrated for- 
mulas  will make  more efficient use of the avai lable  
exper imental  data,  al though the computat ions are of 
the same kind and no more complicated than  those 
required for the algebraic results. In  fact,  the  same 
program apphed by  us (1957) to a ten-atom test  
problem can be used ~ i t h  the integrated formulas. 

In  addit ion to the formulas derived by probabi l i ty  
methods,  we introduce two fundamenta l  identities. 
The first of these plays the impor tan t  role of refining 
the value of the magni tude  of a structure invar ian t  
(Haup tman  & Karle,  1956) using the values of the 
magni tudes  of other invariants ,  ini t ial ly obtained from 
(2.1.3) or (2.2.3). The second ident i ty  is used to refine 
the value (magnitude and sign) of an invar iant ,  using 
the values of other invariants .  The second of these 
identit ies has a l ready been noted in different forms by  
Vaughan (1956, 1958) and by  us (Karle & I-Iauptman, 
1957; H a u p t m a n  & Karle,  1958). We present i t  here 
in a form well adapted to the procedure for phase 
determinat ion which we propose. Since the identi t ies 
are valid, no mat te r  what  the chemical composition of 
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the unit cell may be, they will be especially useful in 
the case tha t  the structure consists of dis-similar atoms. 
A final least-squares refinement for the phases re- 
dundant ly  obtained from the invariants, which is also 
valid for dis-similar atoms, will also be presented. 

R3 = - - -  
1 

4N-~ [ ( q -  2)IEhxEh21~ + (r -- 2)1Eh~Eh~+,~ 2 [9. 

+ ( p -  2)IEhx+h~Eh~ I ~ -  (P + q)IEha 12 -- (q + r)IEh~I 2 

- (r+p) IEh,+n212+ (p+q+r+2)] + . . . .  

2. P h a s e - d e t e r m i n i n g  f o r m u l a s  

We list here for ready reference all formulas derived 
in this paper. In these formulas the E's  are the nor- 
malized structure factors, the ~'s are the corresponding 
phases, p, q, r, and t are arbi trary real non-negative 
numbers, N is the number of atoms (assumed iden- 
tical) in the unit cell, a n d / 1  is the Gamma function. 
Although only the space group P1 is considered here, 
it will be clear tha t  the same methods are apphcable 
to all the space groups. 

I t  is known tha t  the magnitudes of the structure 
factors uniquely determine the magnitudes of the 
structure invariants (Hauptman & Karle, 1956). 
Equations (2.1.3) and (2.2.3) are mathematical  re- 
alizations of this fact in tha t  they express the magni- 
tudes of certain structure invariants (namely those of 
the form ~h,+~0h2+~--h~--n2) explicitly in terms of 
the magnitudes of the structure factors. 

2.1. The basic formulas, Bin, n 

B~,0" <lEk[P>k = T' 1-- l ~ p ( p - - 2 ) + - - - -  

}* × p ( p - 2 ) ( p - 4 ) ( 9 p +  10)+ . . . .  

4N 
-B2,o" I E , , ? - I - -  

pqF \--~-] \---~-] 

× <(lEkl p -  IEf)(IEh_kl ¢ -  IElq)>k +Re ,  
where 

I E f  = <IE,,IP>k 
and 

1 
R~ 64N [4(p--2)(q--2)IEh[4 

4608_N 2 

(2-1.1) 

(2"1"2) 

--4(p2 +4pq+q~--6p--6q) lEh[ 2 
+ 4 ( p + q + 2 )  (p+q- -4) ]+  . . . .  

B3, o: [EhlEh2Enx+,,~[ cos (qhx+(Ph~+q~--h~--h2) 
4N3/~. 

= <(IEkIP-IEIP) 
pqr_l-'(P2-~2 ) ]N(q2---~2 ) . l - ' ( ~ )  

× (IEnl+k[ ~-  [Elq )(IEnx+n2+kl ~- ]Ef)>k+Ra, (2.1.3) 

where 

* This formula  should be compared  wi th  (30) of H a u p t m a n  
& Kar le  (1953b). The discrepancy in the  th i rd  te rms  of these 
two expressions is due to a numer ica l  error in the computa-  
t ion  of the  th i rd  t e rm of (24) in the  earlier paper.  

B 2 o: E h = 2¥½<EkEh-klEk[PlEh-k[q>k 
,- <[EklP+2IEh_k[q+2>k 

+ . . . .  (2-1.4) 

The notation B~, = means tha t  each contributor to 
the average which appears in the corresponding for- 
mula requires a knowledge of the magnitudes of m 
normalized structure factors and of the phases of n 
of them. 

The formulas B1, 0, B2, 0, B3,0 and B2, ~ may_ be 
compared with the corresponding equations for P1 of 
Hauptman & Karle (1958). I t  is also seen tha t  these 
equations are generalizations of equations (2.1), (2.2), 
(2.4) and (2.5) of Karle & Hauptman (1957) which 
were obtained by algebraic means. The newer for- 
mulas reduce to the previous ones for special values of 
p, q, and r. 

Since the coefficients of the averages appearing in 
(2.1.1)-(2.1.3) decrease with increasing p, q, and r, it is 
desirable to use as large values of p, q, and r as the 
number and accuracy of the data permit. 

2.2. The integrated formulas, I,n, 
We make the definition 

A n =  A,~(t) = StoXnT'(~-~) dx,  (2.2-0) 

and, using Simpson's Rule, find the entries listed in 
Table 1. Corresponding to the basic formulas Bin,= 
are the integrated formulas, Ira, n. 

Table 1. The values of A=(t) = dx 

for various values of t and n 
t n = 0  n = l  n = 2  n = 3  

0 0.000 0.000 0.000 0"000 
1 0-918 0.450 0.298 0.223 
2 1.85 1.85 2.49 3.77 
3 2-99 4.74 9.87 22.9 
4 4.62 10.5 30.3 96.1 
5 7.20 22.2 83.9 341 
6 11.7 47.2 223 1117 

/ ] E k [ t - - l \  _ A o A2-2A1  
11,0:  \ l - ~ [ - ~ k l / k -  16------~--+ . . . .  (2-2.1) 

4N /([Ek,t--I 
12,0: [Eh[ 2 -1  = ~ \ \ l ~ [ E - - ~  

× \log lEh-kl 
where 

19" 
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and 

IEkl t -  1 )  
M = M(t) = \ l o g  IEk[ k' 

1 
16NA~ [(2A~-A~)~[Eht 4 

+2 ( 6A1A 2 -  A1A z -  2A ~) [Eh[ 2 

-- 2 (4A~ + 2AxA2-AIAa-A~.)]  + . . . .  

The value of M is computed from the experimentally 
determined ]Ek[ (rather than from the theoretical 
(2.2.1)), since this is expected to compensate partially 
for the limitations inherent in the experimental data. 
The values of the A~ are computed from the entries 
in Table 1. Since the expression (IEIt-1)/log IE] be- 
comes indeterminate when IE[ = 1, it is to be replaced 
by its limit, t, as IEI approaches unity. 

4N3/2 
~3, o: ]EhlEh2Ehl+h2[ COS ((~hl+~h2+~_hl_h2) -- A3 

/ (]Ek]t--1  M)( 'Ehl+klt--1 M)  
× \ \ l o g  IEkl \ log IEh~+kl 

( IEhx+h2+~lt-1 _ M ) \  / ' >( 
\log lEhx+h2+kl / k  +Ra '  

(2.2.3) 

where 
1 

tt~ 4N½A 1 [(2A1-A2)(]EhlEh~[ 2 

+ IEh2Ehl+h2]2 + IEhl+h2Ehl[ 2) + 2A2 ([EhI[ 2 

+ ]Eh~12 + [Ehl+U2[ 2) -- (2A1 + 3A2) ] + . . . .  

I2,2: Eh = 

-N½/(IEk]t--l~(]E~-kl'--l-~EkEh-k?k\ + . . . .  (2"2"4) 
\ \ l o g  IEkl/ \log IEh_kl] 

(IEkl'--1 ( [Eh-k[ - - l~E2E~_k~  
\log lEkl] \log [Eh_kl/ / k 

Each formula consists of a main term plus remainder 
terms of higher order in 1/h r. The remainder terms are 
thus negligible if hr is sufficiently large. Only in (2.2.4) 
is an explicit expression for the first remainder term 
omitted. If t is chosen to be large (e.g. 5 or 6) and hr 
is small, it may  be necessary to obtain this remainder 
term by the methods to be described. Note tha t  the 
averages in the denominators of (2.1.4) and (2.2.4) 
are to be taken over the same vectors k which occur 
in the numerators. 

3. Analys i s  

3-1. The probability distributions 
The method employed here is the same as that  

introduced in Monograph I. Here, however, the mixed 
moments are computed by averaging over the indices 
rather than over the coordinates. Thus, although the 
methods for obtaining the present joint distributions 
have already been described in Monograph I, these 

distributions constitute a new application of the 
general theory. 

In  addition to employing the mixed moments, an 
alternative procedure involving the introduction of 
Bessel functions, mentioned by us (Karle & Haupt- 
man, 1958, § 3), was also used. I t  was found tha t  this 
procedure, together with the introduction of polar 
coordinates, effected an essential simplification of the 
mathematical manipulations. This is the method 
which will be indicated below. 

For a structure consisting of N identical point atoms 
in space group P1, the normalized structure factor 
Ek is defined by 

1 iv 
= ~ exp (2~ik. r i ) ,  (3-1.1) Ek N--~ j=l  

EL = A k + i B k  = [Ek[ exp [iTk], (3"1"2) 

where r] is the position vector of the j t h  atom. Let 
ko, kl, . . . ,  km be m + l  arbitrary vectors in reciprocal 
space which are not necessarily independent. Denote 
by P ' ( X  0,X 1 , . . . , X m ;  Y0, Y l , . . . ,  Ym) the joint 
probability distribution of the 2m+2 real and imag- 
inary parts, A0, A 1 , . . . ,  Am; B0, B z , . . . ,  Bin, of the nor- 
malized structure factors, as the kv range uniformly 
(but not necessarily independently) through reciprocal 
space, i.e. 

P ' ( X  0, X~, . . . ,  X~; Yo, Yl, . . . ,  Ym) 

X dXodX 1. . .  dXmd Yo d YI" • • d Y,~ 

is the probability tha t  the A~ lie between X,. and 
X~+dX~ and tha t  the B~ lie between Y~ and Y~+ dye, 
v = 0 , 1 , . . . , m .  Denote by P(~0 ,~ l , - . . ,~m;  z/0,~h, 
• . . ,  zlm) the joint probability distribution of ~k~ = 
COS 2gl~. rj and ~k~ = sin 2nk,.  r# v -- 0, 1, . . . ,  m, 
where ry is a fixed vector and the k, range uniformly 
through reciprocal space. Then, by a well known 
fundamental theorem of probability theory (e.g. pp. 
30, 31 of Monograph I), 

P'(Xo, X~, . . . ,  Xm; Yo, Y~, " " ,  Ym) 

(2~)2m+2 . exp (Xvx~+ Y,,y~) 

N 
x Hq'(xo, Xl, . . . ,  xm; Yo, Yl, . . . ,  Ym) 

i=1 

× dx o dXl . . ,  dxm dy o dy 1 . ..  dym, (3" 1" 3) 
where 

q'(xo, Xl, . . . ,  Xm; YO, Yl, " " ,  Ym) 

- -  . .  . ,  . ° .  -0o" (~o, ~1, . .  ~m; ~o, ~1, , ~m) × 

exp ~-~ .~ (~,x~+r],,y~) d~od~l...d~mdr]odrh...drlm. 
v = O  

(3.1.4) 

For the purposes of this paper, we have derived 
three different joint probability distributions" 
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(1) The distribution of a single normalized structure 
factor E k a s  k ranges uniformly throughout reciprocal 
space. 

(2) The joint distribution of the pair of normalized 
structure factors, Ek, Eh-k, where h is a fixed vector 
and k ranges uniformly throughout reciprocal space. 

(3) The joint distribution of the three normalized 
structure factors Ek, Ebb+k, Ehx+h~+k, where h 1 and h e 
are fixed vectors and k ranges uniformly throughout 
reciprocal space. 

In order to illustrate the mathematical  method, 
which involves the introduction of Bessel functions 
and the transformation to polar coordinates in (3.1.3) 
and (3.1.4), we consider the three-variable case. De- 
note by P(Ro, R 1 . . . .  , R~; 40, 41 . . . .  , 4 ~ )  the joint 
probability distribution of the 2m+2 magnitudes and 
phases of the normalized structure factors as the k~ 
range uniformly (but not necessarily independently) 
through reciprocal space, i.e. 

P(Ro,  R1, . . . ,  R,n; 40, 41, . . . ,  4m) 
× dRodR ~ •. • dRrnd4od41 • • • d4m 

is the probability tha t  the IEj lie between R~ and 
R~+dR~ and that  the ~ lie between 4~ and 4~+d4~, 
v = 0, 1, . . . ,  m. By means of the transformations 

and 
X~ = R~ cos 4 ,  Y~ = R~ sin 4~,  

x ~ = ~ c o s 0 ~ ,  y ~ = ~ s i n 0 ~ ,  

(3.1-5) 

(3.1-6) 

we obtain from (3.1-3) and (3.1.4), for m = 2, 

P (R0, R1, Re ; 40, 41, 4e) 

(2~) 6 oo=O o~=o o~=o Oo=O,-%=o o~=o 

x exp - i  .2J R ~ .  cos (0~-4~) 

x Oo~l~e IIq(~o, ~ ,  ~ ;  0o, 01, O~.)d~od~d~edOodOldOe, 
]=1 

where (3.1.7) 

q(~o, ~1, ~e; 0o, 01, 0~) 

= exp ~-~ [Qo cos (2~k. r ~ -  0o) 

+ ~1 cos (2~(hl+k) . r~-0~)  

+ • 

1 /  k 

Making use of the Bessel function expansions for 
exp (iz cos 0) (Watson, 1945, p. 23), it is found that  
(3.1.8) becomes 

q(~o, ~1, Qe; 0o, 01, 0~) 

1 ~1+~2+2~0~1 cos = Jo ~--~[~)o+e 9 e (2:~hl.rj+00_01) 

+ 2~o~e cos (2jr(hi+h2). r j+0o-0e)  

+ 2Ql~ cos (2:rh~.rj+0x-02)]½~ . (3.1.9) 
/ 

I t  should be noted tha t  in deriving (3.I.9) the sub- 
scripts 0, 1, 2 have been associated with the vector 
subscripts k, h l + k ,  h l + h 2 + k ,  respectively, of the 
normalized structure factors. The substitution of 
(3.1.9) into (3.1.7) and the evaluation of the integrals 
in (3.1.7) lead after tedious manipulation to the de- 
sired probability distribution, 

P (R  0, R1, Rg; 40, 41, 42) 

RoR, R ~ { 2 
( - R o - R 1 - R ~ )  1+~-~ :~3 exp ~ 2 [RoR1 IEhl I 

× cos (~vbl + 4 o -  41) +RoR~JE, x+,,~I cos (~h~+n~ 

+ 4 o -  42) +R1R~]En~[ cos (~h~ + 41 - 4e)] + . - - /  @ 

(3-1.10) 

We have carried out the probability distribution to 
terms of the order 1IN 2 as is required for the purposes 
of this paper. However, owing to their extreme length, 
these terms are not included here. Similar probability 
distributions were obtained for the structure factor 
Ek and for the pair of structure factors El,, E,_~,. I t  
is anticipated tha t  the probability distributions and 
the expected values (see § 3.2) will be made available 
at a future date. 

3-2. The average values 
:By means of the following formula 

<lEk]P]Ehl+k[q[Ehl+h2+k]r>k 

f f fl fl fl - -  l:?P l:?q l o t  
- -  . ~ 0 ~ 1 ~ 2  

R0=0 RI=0 R2=0 ~o=0 ~1=0 ~2=0 

×P(Ro, R1, Re; 4o, 41, 4e)dRodRldR~d4od41d4e,  

(3"2.1) 

where P is given by (3.1.10), the average value of 
[Ek]P]Ehl+k[q[Ehl+h2+k] r is obtained, where k ranges 
uniformly throughout reciprocal space. In  a similar 
way the average values of ]Ek]P, [Ek[ViEh_k[ q, and 
IEklPlE,_klqEkE,_k may be found. 

3"3. The basic formulas 
The basic formula B3, o is obtained by expanding 

< ([Ekl p -  [ ElY)(]Eh~+k] q -  IE[q)([Eh~+h2+k[ ~ -  [E{ ~)>k. 
(3.3.1) 

I t  is found tha t  (3.3.1) is expressible in terms of several 
of the averages obtained in § 3.2. We are then im- 
mediately led to (2.1.3). In a similar way the re- 
maining basic formulas are found. 

Since the basic formulas are valid for all non- 
negative values of the parameters, p, q and r, they 
constitute a generalization of the corresponding alge- 
braic formulas given by us (Karle & Hauptman,  1957). 
Clearly, for different choices of the values of p, q, 
and r, we have different relationships for computing 
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the invariants. For the case of an infinite set of ac- 
curate data any one set of values of p, q and r would 
suffice to give accurate values for the invariants. In 
the practical case of limited experimental data, the 
possibility of using various sets of values for p, q 
and r makes for more effective use of the data. In 
particular, the larger values of p, q, and r are especially 
useful when the data are sufficiently accurate and 
extensive. 

found, it will be seen that  the validity of the refine- 
ment procedures to be described is independent of the 
chemical composition of the unit cell. 

5. Two f u n d a m e n t a l  ident i t i es  

5.1. The first fundamental identity 
The identity 

IEhlEh~Ehl+h2l cos (q~hl+tph~+~_hl_h2),~ 

4 ~, []EhiEk,Eh~+k. [ cos (~h~+q)k'+~-h~-k')][[EhoEk'Eh2 k'l cos ((ph2~U(p_k,~-(~_h2_k,)] 
k '  ~ - -  ' 

[[Ehl_h2Ehl+k, Eh2_k, [ COS (~-hl--h~ + ~h~+k'+ ~h~--k')] [ 1  ] 
1 + ~ (lEhl[ 2 + IEh212 + IEhl+h2[ 2) ~ [Ek, Ehl+k,Eh2_k,[2 

k' 
(5.1.1) 

3.4. The integrated formulas 
Instead of computing the basic formulas for many 

different sets of p, q, and r, it is desirable to obtain 
a single formula which is equivalent to computing 
these formulas over a continuous range of values from 
0 to t for p, q, and r. I t  is advantageous to use as large 
a value of t as the accuracy and extent of the ex- 
perimental data warrant. 

In order to prove the typical integrated formulas 
(2.2.3), we multiply (2.1.3) by 

p q r [ ' ( ~ )  F(q2---~2 ) I'(r2---~2) , 

and integrate between the limits 0 to t for p, q, and r 

I a~dx = a~/l°g a). The remaining integrated (using 

formulas are derived in the same way where reference 
should be made to Table 1. 

where k '  ranges over all vectors in reciprocal space, 
is a useful supplement to (2.1.3) and (2.2-3). In prac- 
tice something of the order of fifty values for k '  may 
suffice to make the application of (5-1.1) worth while. 
The symbol ~ indicates that  the identity is only 
approximate owing to the omission of correction terms 
higher than order of 1/N in the bracketed term of the 
denominator of (5.1.1). I t  seems unlikely that  the 
terms of higher order than 1/N would ever be required 
in practice. They may be obtained however (as is 
(5.1.1) itself) from a computation of the expected value 
of the numerator of (5.1-1), making use of the joint 
probability distribution indicated in (3-1.10), with the 
higher-order terms included. I t  should be noted that  
each of the bracketed terms in the numerator of (5.1.1) 
is obtained directly from a calculation of formulas 
(2-1.3) or (2.2.3). We thus have a means for improving 
the initially calculated value of the magnitude of an 
invariant by making use of the initially calculated 
values of the magnitudes of other invariants. 

4. D i s - s i m i l a r  a t o m s  

In the case that  the structure consist of N atoms per 
unit cell, not all identical, we suggest, on the basis of 
results previously obtained in Monograph I (1953), 
that  N, in formulas (2.1.1)-(2.1.4), (2.2.1)-(2.2.4), and 
(5.1.1) written below, be replaced as follows: 

-/~--> 2/ 3,  ~z/(~2 (4"1) 
where 

N 
(~n = ~" Z~ ~ , (4.2) 

j= l  

and Zj is the atomic number of the j th  atom. Evidently 
aa/a 2 reduces to N in the case that  all atoms are 21 3 
identical. The above mentioned equations, for the case 
of dis-similar atoms, will then no longer have exact 
validity, but merely probable validity. In the next two 
sections, however, the limitation imposed by the 
presence of unlike atoms will be removed. In fact, once 
approximate values for invariants or phases have been 

5"2. The second fundamental identity 
Once refined values for the magnitudes of the 

structure invariants have been found by means of 
§ 5.1, one of the two enantiomorphs permitted by the 
magnitudes of the structure factors may be selected 
by the method described by us (Karle & Hauptman, 
1957). This is equivalent to selecting those signs for 
the structure invariants which belong to this choice of 
enantiomorph. Having a set of values for the structure 
invariants, improved values may be obtained by means 
of the exact identity, 

EhlEhlE-hl-h2 

.~, (EhlEk,E_hl_k ,) (Eh2E_k,E_h~+k,) 
k' (E_hl_h2Ehl+k,Eh2_k,)  

.~ ]Ek.E,,l+k,Eh2_k,] ~ 
k' (5"2"1) 

where k'  ranges over any chosen set of vectors. In fact, 
(5.2.1) is an identity for a single value of k'. Clearly 
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(5.2.1) is valid regardless of the chemical composition 
of the unit cell. Each of the three products to be used 
in the parentheses occurring in the numerator of 
(5.2.1) is obtained from § 5.1 and the procedure for 
choosing an enantiomorph referred to above. 

6. Leas t - squares  re f inement  of phases  

From the refined values of the invariants obtained in 
§ 5-2, initial values of the phases may  be determined 
by the procedure outlined by us (Karle & Hauptman,  
1957). To this end the values of a primitive linearly 
independent triple of phases, ~hl, ~hp, ~h3 must first 
be specified, thus uniquely fixing the origin. From 
these phase specifications and the values of the in- 
variants, initial values for all phases may  be obtained 
by a simple arithmetic process. Improved values for 
the phases may then be obtained by means of a least- 
squares procedure (which is valid regardless of the 
chemical composition of the unit cell) described by us 
(Karle & Hauptman,  1957). The final formulas may 
be written in the following form 

cos ~h = C/(C2+$2)  ½ , 

sin ~h = S/(C~+S~) ½ , 
where 

(6.1) 

(6.2) 

(6.3) 

(6-4) 

O = ~7 IE#I c o s  (b#-q)ij), 
i, j 

S = Z ,  [E#[ sin (b#-q)#) , 
i, i 

E i j =  Eh iEh j ,  (6.5) 

~# = ~hi+~hj; (6"6) 

and bij is the value of the invariant ~h+~hi+~hi  
(obtained from § 5.2), where 

h + h ~ + h j  = 0 ,  (6.7) 

and the sums in (6.3) and (6.4) are computed over all, 
i and j satisfying (6.7). Thus equations (6.1)-(6.7) 
yield an improved value for the phase ~h once initial 
values ~hi and ~h~ of the phases are known. Equations 
(6.3) and (6.4) are to be identified with (4.40) and 
(4-41) of our previous paper on space group P1 
(Karle & Hauptman,  1957). 

7. Concluding r e m a r k s  

By means of the joint probability distribution, the 
basic and integrated formulas of this paper were ob- 
tained. I t  is apparent tha t  these formulas constitute 
a considerable generalization over those obtained by us 
(Karle & Hauptman,  1957) by means of the unified 
algebraic method. They thus may be expected to make 

more efficient use of the available data. This is ac- 
complished without any additional complication in the 
program for computing. The required computations 
may be easily and rapidly carried out on present-day 
computing facilities, and the basic program has already 
been worked out for a medium-speed machine at the 
Bureau of Standards. 

The procedure for phase determination presented in 
this paper is an improvement over our previous one 
not only as a consequence of improved formulas for 
computing the magnitudes of invariants but  also as a 
consequence of the subsequent refinements effected by 
the two fundamental  identities. The importance of the 
first fundamental identi ty is that  it yields the accurate 
values for the magnitudes of the invariants which are 
needed in order to fix an enantiomorph unambigu- 
ously. Once one of the two enantiomorphs has been 
thus chosen (i.e. signs as well as magnitudes of the 
structure invariants have been determined) the second 
fundamental  identi ty enables one to compute ac- 
curately the values (signs and magnitudes) of all the 
important  invariants. These, together with the ar- 
bitrarily chosen values of three phases constituting a 
primitive linearly independent set, lead to initial 
values of the phases. Finally, the least-squares adjust- 
ment then yields improved values for the phases. 

I t  is to be noted tha t  in the procedure for phase 
determination which we suggest, equations (2.1.4) and 
(2.2.4) do not play an important  role. They are to be 
regarded, instead, as supplementary formulas which 
may be occasionally useful, particularly in the case 
tha t  the structure consists of identical atoms. 

The details of the mathematical  analyses in this 
paper are so long and tedious tha t  they have been 
omitted altogether. Only the briefest sketch of the 
analysis, already presented for space group P1 at 
somewhat greater length in a previous paper (Haupt- 
man & Karle, 1958), and a statement of the final re- 
sults are included here. I t  is expected tha t  the missing 
details will be published at  a later date. 
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